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1 A Reaction-Diffusion model

1.1 Preliminary assumptions

Our approach is an adaptation of the models proposed in [1] and later in
[2]. We first assume our system is two dimensional, or in other words, has
cylindrical symmetry. This assumption, justified in [2], requires that both
the laser profile and the nucleus and its contents do not vary along the z-
axis. This also means circular symmetry of the nucleus with respect to the
center of the bleaching spot. Denote the tagged proteins as our ‘particles’ or
‘molecules’. We assume particles do not experience drift (directed transport)
and that binding sites are evenly spread in the parts of the nucleus where
they exist (compare, e.g., [3]). We also use the standard assumption that
the system is in equilibrium prior to the bleaching and remains so during
the entire bleaching and observation periods. Put differently, we assume
bleaching only affects the visibility, but not any other chemical or physical
property, of the particles. The bleaching profile is assumed to be perfectly
circular, that is, all molecules within radius rs, and only these molecules, lose
their fluorescence at time t = 0 when the bleaching step ends. See Section
2.1 for a discussion on the validity of this assumption and on implementation
issues. The nucleus is assumed to be a perfect circle of finite radius rn.

1.2 FRAP Model definition

We assume particles diffuse freely (perform Brownian motion) and also react
with a single type of binding sites (for treatment of multiple binding states
see Section 1.6). The reaction is

F + S
kon−−⇀↽−−
koff

C, (1)
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where F represents free particles, S represents empty binding sites, and C
stands for FS complexes. The reaction on- and off- rates are kon and koff,
respectively, and are r-dependent with the following general form:

kon(r) =

{
k
(i)
on r < rs,

k
(o)
on rs < r < rn.

koff(r) =

{
k
(i)
off r < rs,

k
(o)
off rs < r < rn.

(2)

We state below our results for any general combination of k
(i)
on , k

(i)
off , k

(o)
on , k

(o)
off .

However, the specific cases that will be of highest biological interest are:

• Homogeneous binding. In that case, k
(i)
on = k

(o)
on and k

(i)
off = k

(o)
off , namely

the reaction rate is the same everywhere in the nucleus.

• Internal binding. In that case, k
(i)
on > 0 and k

(o)
on = 0, namely the

reaction occurs only inside the bleached spot but not outside (k
(i)
off > 0,

k
(o)
off is irrelevant in this case).

• External binding. In that case, k
(i)
on = 0 and k

(o)
on > 0, namely the

reaction occurs only outside the spot.

In addition to the free and bound particles, we assume that some particles
are inert and immobile. These (fluorescent) particles, which we call the
static particles, reside in the nucleus, evenly distributed, but do not move
or participate in any reaction.

Denote the concentrations of the visible particles as f = [F ], c = [C],
and β = [B], and the concentration of the binding sites as s = [S]. As in [1],
we assume the concentration of the binding sites is constant throughout the
experiment, or s = seq, because the chemical equilibrium is not disturbed by
the bleaching. We further assume [FS] complexes are immobile (compare,
e.g., [4]). We can thus write the following set of reaction-diffusion equations:

∂f(r, t)

∂t
= D∇2f(r, t)− konf(r, t)seq + koffc(r, t),

∂c(r, t)

∂t
= konf(r, t)seq − koffc(r, t),

β(r, t) = β(r, t = 0), (3)

where D is the diffusion coefficient of the free particles. Eq. (3) is valid for
t ≥ 0, 0 < r < rn. Note that f = f(r, θ, t) = f(r, t) and c = c(r, θ, t) =
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c(r, t) due to the assumed circular symmetry. The concentration of the free
particles, f , and its derivative must be continuous at r = rs. However the
concentration of the bound particles need not be. The static particles do
not move and do not participate in the reaction and therefore the equation
for their evolution is trivial and will be usually omitted henceforth.

To simplify the Eq. (3), let k∗on = konseq be the pseudo-on rate,

∂f

∂t
= D∇2f − k∗onf + koffc,

∂c

∂t
= k∗onf − koffc. (4)

To simplify the notation, in the following we denote the pseudo-on rate
simply as the ‘on rate’ and k∗on just as kon. Our equations can thus be
finally written as

∂f

∂t
= D∇2f − konf + koffc,

∂c

∂t
= konf − koffc. (5)

The boundary condition is:

∂

∂r
f(r, t)

∣∣∣∣
r=rn

= 0, (6)

namely the boundaries of the nucleus serve as reflecting walls [5].
In FRAP, bleaching at t = 0 removes all visible molecules from the

bleaching spot r < rs. Thus, the initial conditions are given as follows. For
the static particles,

β(r, t = 0) =

{
0 r < rs,

β rs < r < rn,
(7)

because before the bleach, the concentration of the static particles is constant
in space and can be simply denoted with β. For f and c,

f(r, t = 0) =

{
0 r < rs,

f
(o)
eq rs < r < rn.

c(r, t = 0) =

{
0 r < rs,

c
(o)
eq rs < r < rn,

(8)

3



where f
(o)
eq and c

(o)
eq are the equilibrium concentrations of f and c, respec-

tively, for rs < r < rn. To find these, we calculate first the equilibrium

concentrations for r < rs, f
(i)
eq and c

(i)
eq . In equilibrium, all time derivatives

vanish. Thus k
(i)
onf

(i)
eq − k

(i)
offc

(i)
eq = 0. This gives one equation for f

(i)
eq and c

(i)
eq .

To find another equation, we need to define the detected signal.
Let the macroscopic measured signal in a FRAP experiment be the av-

erage concentration of visible molecules across the circle r < rm,

I(t) = 1

πr2m

∫ rm

0
2πr[f(r, t) + c(r, t) + β(r, t)]dr. (9)

We denote rm ≤ rs as the monitoring radius. I(t) will later be calculated
analytically and compared to the experimental signal. At t = 0, we demand
normalization or that I(t) = 1 (Section 2.4). Since in equilibrium f(r <

rs) = f
(i)
eq and c(r < rs) = c

(i)
eq , we have by normalization at t = 0 that

f
(i)
eq + c

(i)
eq + β = 1. This is our second equation for f

(i)
eq and c

(i)
eq from which

we have f
(i)
eq = (1 − β)

k
(i)
off

k
(i)
on+k

(i)
off

and c
(i)
eq = (1 − β) k

(i)
on

k
(i)
on+k

(i)
off

. Since f must

be continuous, we have f
(o)
eq = f

(i)
eq . The time derivatives vanish also for

rs < r < rn, and hence c
(o)
eq = k

(o)
on

k
(o)
off

f
(o)
eq . Thus, we finally reach

f (o)
eq = (1− β)

k
(i)
off

k
(i)
on + k

(i)
off

,

c(o)eq = (1− β)
k
(o)
on

k
(o)
off

k
(i)
off

k
(i)
on + k

(i)
off

, (10)

and by that we specified the initial conditions.
Eq. (10) for the equilibrium concentrations, along with Eqs. (2), (5),

(6), and (8) for the differential equations system, and with Eq. (9) for the
detected signal, completely define the model.

1.3 Computational framework

The computational approach can be outlined as follows:

1. Set the parameters rm, rs, rn, β, and the binding model (homoge-
neous/internal/external binding) according the experimental setup.

2. Given D, kon, and koff, solve the system of equations (5), (6), and (8),
and obtain I(t).
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3. Compare I(t) calculated from the model to the experimentally mea-
sured intensity Iexp(t). Record the difference.

4. Modify D, kon, and koff, and jump to step 2.

5. Report the values of D, kon, and koff that gave the best fit to the
experimental data.

Note that although in principle there are four reaction rate parameters

k
(i)
on , k

(i)
off , k

(o)
on , k

(o)
off , in the practical cases of interest (homogeneous/internal/external

binding) there are only two free parameters and the other pair of parameters
are either zero/irrelevant or are determined from the first two (Section 1.2).
We can therefore refer unambiguously to the reaction rate parameters as
just kon and koff. Details on the implementation of the various steps, and
in particular, on the search in the parameter space to find the best fit, are
given in Section 2.6.

1.4 FRAP Model solution

To solve Eq. (5) and find the total intensity I(t), we Laplace transform Eq.

(5) t → p. Using the Laplace identity L
{

∂f
∂t

}
= pf − f(t = 0), this yields

for r < rs

pf(r, p) = D∇2f(r, p)− k(i)onf(r, p) + k
(i)
offc(r, p),

pc(r, p) = k(i)onf(r, p)− k
(i)
offc(r, p). (11)

For rs < r < rn,

pf(r, p)− f (o)
eq = D∇2f(r, p)− k(o)on f(r, p) + k

(o)
off c(r, p),

pc(r, p)− c(o)eq = k(o)on f(r, p)− k
(o)
off c(r, p). (12)

We use along this document the convention that the variable in parenthesis
defines the space we are working in. Thus, f(r, p) is the Laplace transform
t → p of f(r, t), etc. (we occasionally even omit the arguments when they
are clear from the context). The equation for c is algebraic and is easily
solved in terms of f ,

c(r, p) =


k
(i)
on f(r,p)

p+k
(i)
off

r < rs,

c
(o)
eq +k

(o)
on f(r,p)

p+k
(o)
off

rs < r < rn.
(13)
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Substituting Eq. (13) in Eq. (12) we obtain the following ordinary differen-
tial equation for f :

∇2f(r, p) =

{
q2i f(r, p) r < rs,

q2of(r, p)− V rs < r < rn,
(14)

where

q2i =
p

D

(
1 +

k
(i)
on

p+ k
(i)
off

)
,

q2o =
p

D

(
1 +

k
(o)
on

p+ k
(o)
off

)
, (15)

and

V =
f
(o)
eq

D

(
1 +

k
(o)
on

p+ k
(o)
off

)
. (16)

In the equation for V we used the relation c
(o)
eq =

(
k
(o)
on /k

(o)
off

)
f
(o)
eq . Writing

the Laplacian in Eq. (14) in cylindrical coordinates, we have

∂2f

∂r2
+

1

r

∂f

∂r
=

{
q2i f r < rs,

q2of − V rs < r < rn.
(17)

The solution of the last equation is a combination of modified Bessel func-
tions of the first and second kinds [6]:

f =

{
AI0(qir) r < rs,

BI0(qor) + CK0(qor) +
V
q2o

rs < r < rn,
(18)

where we eliminated the modified Bessel function of the second kind K0 in
the region r < rs because K0 diverges at r = 0. We now demand continuity
of f and its first derivative at r = rs and the boundary condition at rn.
This results in the following linear system of equations for the coefficients
{A,B,C}:

AI0(qirs) = BI0(qors) + CK0(qors) +
V

q2o
,

AqiI1(qirs) = BqoI1(qors)− CqoK1(qors),

BI1(qorn)− CK1(qorn) = 0, (19)
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where we used the relations I ′0(r) = I1(r) andK ′
0(r) = −K1(r). The solution

of these equations is:

A =
V

q2o

qo
qi

I1(qors)K1(qorn)− I1(qorn)K1(qors)

den
,

B =
V

q2o

I1(qirs)K1(qorn)

den
,

C =
V

q2o

I1(qirs)I1(qorn)

den
. (20)

where

den = (qi/qo)I0(qirs) [I1(qors)K1(qorn)− I1(qorn)K1(qors)]

− I1(qirs) [I1(qorn)K0(qors) + I0(qors)K1(qorn)] . (21)

We thus obtained f for all r. Using f , the concentration of bound complexes
c is given in Eq. (13). The total signal is (in Laplace p space)

I(p) = 1

πr2m

∫ rm

0
2πr[f(r, p) + c(r, p) + β(r, p)]dr

=
1

r2m

∫ rm

0
2rf(r, p)

(
1 +

k
(i)
on

p+ k
(i)
off

)
dr

= 2A
1

r2m

(
1 +

k
(i)
on

p+ k
(i)
off

)∫ rm

0
rI0(qir)dr

= 2A

(
1 +

k
(i)
on

p+ k
(i)
off

)
I1(qirm)

qirm
. (22)

Since rm < rs, we could use the expressions for f , c, and β in r < rs
(e.g., β(r < rs, t) = 0, etc.). To solve the integral, we used the relation
[rI1(r)]

′ = rI0(r). Note that A is given in Eq. (20) in terms of the given
parameters rs, and rn, as well as in terms of V , qi, and qo, which are given

in turn in Eqs. (15) and (16) in terms of p and β, D, k
(i)
on , k

(i)
off , k

(o)
on , k

(o)
off .

Thus, we obtained the total signal in terms of p and the given parameters.
To obtain I(t), we need only invert Eq. (22) with respect to p. This is done
numerically, as explained in Section 2.6.

1.5 Limiting cases

1.5.1 Infinite time

Let the concentration of free and bound particles at t → ∞ be f∞ and c∞,
respectively. When t → ∞, all free particles are evenly distributed in the
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nucleus. Thus for all r < rs, c∞ = k
(i)
on

k
(i)
off

f∞, while for rs < r < rn, c∞ =

k
(o)
on

k
(o)
off

f∞. Static particles exist at all times in rs < r < rn in concentration β.

Let the total number of visible particles be N , and define ρi ≡
k
(i)
on+k

(i)
off

k
(i)
off

and

ρo ≡
k
(o)
on +k

(o)
off

k
(o)
off

. Then:

N = f∞

[
πr2s

(
1 +

k
(i)
on

k
(i)
off

)
+ π

(
r2n − r2s

)(
1 +

k
(o)
on

k
(o)
off

)]
+ βπ

(
r2n − r2s

)
= f∞π

[
r2sρi + (r2n − r2s)ρo

]
+ βπ

(
r2n − r2s

)
. (23)

The total number of visible particles can also be computed from the initial
conditions at t = 0:

N = f (o)
eq π

(
r2n − r2s

)(
1 +

k
(o)
on

k
(o)
off

)
+ βπ

(
r2n − r2s

)
= (1− β)

k
(i)
off

k
(i)
on + k

(i)
off

π
(
r2n − r2s

)(
1 +

k
(o)
on

k
(o)
off

)
+ βπ

(
r2n − r2s

)
= (1− β)π

(
r2n − r2s

) ρo
ρi

+ βπ
(
r2n − r2s

)
. (24)

Equating the last two equations we obtain,

f∞ = (1− β)
1

ρi

(1− ϵ2)ρo
ϵ2ρi + (1− ϵ2)ρo

, (25)

where ϵ = rs/rn < 1. The signal for long times is

I(t → ∞) =

(
1 +

k
(i)
on

k
(i)
off

)
f∞ = ρif∞

= (1− β)
1

1 + ϵ2

1−ϵ2
ρi
ρo

. (26)

Note that I(t → ∞) < 1 because visible particles were removed at t = 0
and thus recovery cannot be complete. Also note that for ϵ → 0 (an infinite
nucleus), the signal at long time is (1− β), which is the mobile fraction.
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1.5.2 The reaction-dominant limit

Consider the case when diffusion is extremely fast such that D → ∞. In this
case, the concentration of the free particles is always the same everywhere
the nucleus. The system of equations (5) becomes:

∂c(i)

∂t
= k(i)onf − k

(i)
offc

(i),

∂c(o)

∂t
= k(o)on f − k

(o)
off c

(o),

∂f

∂t
=

1

πr2n

[
πr2s

(
−∂c(i)

∂t

)
+ π(r2n − r2s)

(
−∂c(o)

∂t

)]
= ϵ2

(
k
(i)
offc

(i) − k(i)onf
)
+ (1− ϵ2)

(
k
(o)
off c

(o) − k(o)on f
)
, (27)

where c(i) and c(o) are the concentrations of bound particles for r < rs and
rs < r < rn, respectively, and ϵ = rs/rn (Section 1.5.1). Note that c(i),
c(o), and f are constants in space, and thus (27) is a system of ordinary
differential equations. The equation for f is justified as follows. Clearly, the
increase (per unit time) in the total number of free molecules is equal to

the total decrease in the number of bound molecules, πr2s

(
−∂c(i)

∂t

)
+π(r2n−

r2s)
(
−∂c(o)

∂t

)
. Molecules that become free are immediately evenly distributed

throughout the nucleus, and thus the increase in the concentration of free
molecules is obtained by dividing the last expression by the total area of the
nucleus, πr2n.

Let us specify the initial conditions of Eq. (27). Denote by fpb = f(t =
0) the post-bleaching concentration of the free particles. To calculate fpb,

we recall that at t < 0, f = f
(o)
eq = f

(i)
eq = feq = (1 − β)

k
(i)
off

k
(i)
on+k

(i)
off

and

write a conservation of material equation for the free particles fpbπr
2
n =

feqπ(r
2
n − r2s). Thus, fpb = (1 − ϵ2)feq. For r < rs, c

(i)(t = 0) = 0. For

rs < r < rn, c
(o)(t = 0) = c

(o)
eq = (1 − β)k

(o)
on

k
(o)
off

k
(i)
off

k
(i)
on+k

(i)
off

. As in Section 1.4, we

Laplace transform Eq. (27) t → p. This yields:

pc(i) = k(i)onf − k
(i)
offc

(i),

pc(o) − c(o)eq = k(o)on f − k
(o)
off c

(o),

pf − (1− ϵ2)feq = ϵ2
(
k
(i)
offc

(i) − k(i)onf
)
+ (1− ϵ2)

(
k
(o)
off c

(o) − k(o)on f
)
. (28)
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This is an algebraic system of equations. The solution of this system is

c(i) =
k
(i)
onf

p+ k
(i)
off

,

c(o) =
k
(o)
on f + c

(o)
eq

p+ k
(o)
off

,

f =

feq(1− ϵ2)

[
1 + k

(o)
on

p+k
(o)
off

]
p

[
1 + ϵ2 k

(i)
on

p+k
(i)
off

+ (1− ϵ2) k
(o)
on

p+k
(o)
off

] , (29)

where we used the fact that k
(o)
off c

(o)
eq = k

(o)
on feq. The total signal is I(p) =

f + c(i), or,

I(p) =

(
1 +

k
(i)
on

p+ k
(i)
off

) feq(1− ϵ2)

(
1 + k

(o)
on

p+k
(o)
off

)
p

[
1 + ϵ2 k

(i)
on

p+k
(i)
off

+ (1− ϵ2) k
(o)
on

p+k
(o)
off

] . (30)

As in Section 1.4, we obtain I(t) by numerical Laplace inversion p → t. The
long times limit is exactly as in Section 1.5.1.

1.5.3 Diffusion only

The limit when the process is dominated by diffusion is obtained by substi-

tuting k
(i)
on = k

(o)
on = 0 in the equations of Section 1.4. We note that when

rm = rs ≪ rn and β = 0, the total signal can be approximated by the
Soumpasis equation [7]

I(t) = e−
τ
t

[
I0

(τ
t

)
+ I1

(τ
t

)]
, (31)

where τ = r2s/(2D) is the typical recovery time.

1.6 Two binding states

The generalization of our model to multiple binding states is straightforward.
We give the definitions and the final equations for the case of two binding
states. Denote as before the free particles by F (concentration f), the bound
particles of type (1) as C(1) (concentration c(1)), and the bound particles of
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type (2) as C(2) (c(2)). Static particles have constant (in space and time)
concentration β. The reactions are:

F + S(1) k
(1)
on−−⇀↽−−
k
(1)
off

C(1),

F + S(2) k
(2)
on−−⇀↽−−
k
(2)
off

C(2), (32)

where

k(1)on (r) =

{
k
(1,i)
on r < rs,

k
(1,o)
on rs < r < rn.

k
(1)
off (r) =

{
k
(1,i)
off r < rs,

k
(1,o)
off rs < r < rn,

k(2)on (r) =

{
k
(2,i)
on r < rs,

k
(2,o)
on rs < r < rn.

k
(2)
off (r) =

{
k
(2,i)
off r < rs,

k
(2,o)
off rs < r < rn.

(33)

With two binding states, it is possible to implement a biological model in
which there are different types of binding sites inside and outside the spot.
We assume as in Section 1.1 that the binding sites are immobile and the
the bleaching does not disturb the chemical equilibrium. We can therefore
use the pseudo-on rates as in Section 1.2 and obtain the following reaction-
diffusion system:

∂f

∂t
= D∇2f − k(1)on f + k

(1)
off c

(1) − k(2)on f + k
(2)
off c

(2),

∂c(1)

∂t
= k(1)on f − k

(1)
off c

(1),

∂c(2)

∂t
= k(2)on f − k

(2)
off c

(2),

β(t) = β(t = 0). (34)

The boundary condition is as in Section 1.2:

∂

∂r
f(r, t)

∣∣∣∣
r=rn

= 0. (35)
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The total signal is the sum of the concentrations of the static particles, the
free particles, the bound particles of type (1), and the bound particles of type
(2) in the region r < rs. Thus, at t < 0 when the system is in equilibrium,

I(t < 0) = feq

(
1 +

k
(1,i)
on

k
(1,i)
off

+
k
(2,i)
on

k
(2,i)
off

)
+ β = 1. (36)

The initial conditions can therefore be written as:

f(t = 0) = feq = (1− β)

(
1 +

k
(1,i)
on

k
(1,i)
off

+
k
(2,i)
on

k
(2,i)
off

)−1

,

c(1)(t = 0) =


0 r < rs,

c
(1,o)
eq = (1− β)k

(1,o)
on

k
(1,o)
off

(
1 + k

(1,i)
on

k
(1,i)
off

+ k
(2,i)
on

k
(2,i)
off

)−1

rs < r < rn,

c(2)(t = 0) =


0 r < rs,

c
(2,o)
eq = (1− β)k

(2,o)
on

k
(2,o)
off

(
1 + k

(1,i)
on

k
(1,i)
off

+ k
(2,i)
on

k
(2,i)
off

)−1

rs < r < rn,

β(t = 0) =

{
0 r < rs,

β rs < r < rn.
(37)

Laplace transforming Eq. (34) t → p as in Section 1.4 we obtain for the
bound particles:

c(1) =


k
(1,i)
on f

p+k
(1,i)
off

r < rs,

c
(1,o)
eq +k

(1,o)
on f

p+k
(1,o)
off

rs < r < rn,

c(2) =


k
(2,i)
on f

p+k
(2,i)
off

r < rs,

c
(2,o)
eq +k

(2,o)
on f

p+k
(2,o)
off

rs < r < rn.
(38)

For the free particles, we obtain the same equation as in Section 1.4

∇2f(r, p) =

{
q2i f(r, p) r < rs,

q2of(r, p)− V rs < r < rn,
(39)
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but where now

q2i =
p

D

(
1 +

k
(1,i)
on

p+ k
(1,i)
off

+
k
(2,i)
on

p+ k
(2,i)
off

)
,

q2o =
p

D

(
1 +

k
(1,o)
on

p+ k
(1,o)
off

+
k
(2,o)
on

p+ k
(2,o)
off

)
, (40)

and

V =
feq
D

(
1 +

k
(1,o)
on

p+ k
(1,o)
off

+
k
(2,o)
on

p+ k
(2,o)
off

)
. (41)

The solution of these equations is exactly as in Section 1.4; one simply must
use the new definitions of qi, qo, and V (e.g., in Eq. (20) for A). The total
signal is

I(p) = 2A

(
1 +

k
(1,i)
on

p+ k
(1,i)
off

+
k
(2,i)
on

p+ k
(2,i)
off

)
I1(qirm)

qirm
. (42)

For long times,

I(t → ∞) = (1− β)
1

1 + ϵ2

1−ϵ2
ρi
ρo

, (43)

exactly as in Section 1.5.1, but where now ρi = 1 + k
(1,i)
on

k
(1,i)
off

+ k
(2,i)
on

k
(2,i)
off

and ρo =

1 + k
(1,o)
on

k
(1,o)
off

+ k
(2,o)
on

k
(2,o)
off

. In the reaction-dominant limit, repeating the calculation

of Section 1.5.2 gives

I(p) =

(
1 +

k
(1,i)
on

p+ k
(1,i)
off

+
k
(2,i)
on

p+ k
(2,i)
off

)
×

×
feq(1− ϵ2)

(
1 + k

(1,o)
on

p+k
(1,o)
off

+ k
(2,o)
on

p+k
(2,o)
off

)
p

[
1 + ϵ2

(
k
(1,i)
on

p+k
(1,i)
off

+ k
(2,i)
on

p+k
(2,i)
off

)
+ (1− ϵ2)

(
k
(1,o)
on

p+k
(1,o)
off

+ k
(2,o)
on

p+k
(2,o)
off

)] .
(44)

2 Processing of experimental data

2.1 The bleaching radius

An important parameter of our model is the bleaching radius. We assumed
that the bleaching profile is a perfect circle with radius rs, that is, all
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molecules with r < rs are completely bleached while all molecules with
r > rs aren’t. This is not necessarily true in reality due to (a) the Gaussian
profile of the laser beam [8] and (b) diffusion during bleaching that results
in partial recovery of the signal before the end of the bleaching stage of the
experiment [9].

Directly including these factors in our biological model is not always
mathematically feasible (some approaches are presented in, e.g., [9, 10, 11,
12, 13, 14, 15], for conditions somewhat different than ours). In particular,
it is likely to be extremely hard to incorporate both inhomogeneous binding
and non-circular profile (McNally PC). To avoid such complications but still
take into account the effects on a non-circular bleaching profile, we adopted
the method used, e.g., in [8, 16, 4, 17]. In this method, a circular bleaching
profile is assumed, but the bleaching radius is not the software-preset radius
but is instead an effective radius determined from the observed non-uniform
bleaching profile.

To obtain the effective radius, we captured X post-bleach images (were
cells immobilized? they shouldn’t be to account for diffusion during bleach-
ing). We then calculated, for each figure, the average intensity ⟨I(r)⟩, where
r is the distance from the bleaching spot center, and the average is over all
images. We let rM = argmax

r
⟨I(r)⟩ and ⟨I ′(r)⟩ ≡ ⟨I(r)⟩ / ⟨I(rM )⟩, such

that ⟨I ′(rm)⟩ = 1 (alternatively, we defined ⟨I(rM )⟩ as the average intensity
for all points with r > X, and pruned to 1 each value of ⟨I ′(r)⟩ larger than
1). We then defined the average bleaching intensity ⟨B(r)⟩ ≡ 1−⟨I ′(r)⟩. Fi-
nally, we computed the average total bleached area ⟨S⟩ =

∫ rM
0 2πr ⟨B(r)⟩ dr,

where the integral was evaluated using the trapezoid method. Had the
bleaching profile been perfectly circular with radius rs, we would have had
⟨S⟩ = πr2s . Equating these two expressions for the average bleached area we
obtain

rs =

√∫ rM

0
2r ⟨B(r)⟩ dr. (45)

Thus, the effective radius is that of a perfectly circular bleaching profile that
would yield that same amount of bleaching as the experimental one.

We also considered calculating the bleaching intensity ⟨B(r)⟩ directly,
by subtracting the post-bleach image from the pre-bleach image. We cor-
rected for global intensity changes by subtracting a constant value from the
resulting ⟨B(r)⟩ such that the average of ⟨B(r)⟩ for r > X will be zero.
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2.2 The nuclear radius

The radius of the nucleus rn was obtained by calculating first the average
(over Z images) of the area of the nucleus ⟨Sn⟩. The radius was then ob-
tained from πr2n = ⟨Sn⟩.

2.3 The monitoring radius

The monitoring radius was set to...

2.4 Data acquisition and normalization

Captured images were processed first by background subtraction (how?).
The rate of fluorescence loss during observation was measured in a neigh-
boring cell and used to normalize the signal intensity at the investigated
cell. (details?). The normalized signal was then divided by the average
(how?) pre-bleach signal. The final normalized intensity therefore satisfies
I(t = 0) = 1 ; 0 ≤ I(t) ≤ 1. For each cell line or treatment, recovery curves
from Y different cells were averaged. The obtained time series was then
logarithmically binned, i.e., data points were averaged over time periods of
exponentially increasing length. The averaged curve Iexp(t) was fit to the
model (Section 1.2) to infer the kinetic parameters, as described in the next
subsection.

2.5 The static fraction

The concentration of the static particles, β, was obtained as follows. We
performed a FRAP experiment with a particularly small rs, such that ϵ =
rs/rn → 0. In this case, I(t → ∞) = (1 − β) (Eq. (26)), enabling direct
measurement of β.

(Add details)

2.6 Data fitting

The first step in data fitting was the determination of the kinetic model, as
follows.

• One reaction and diffusion. In that case, the parameters to be fit are
D, kon, koff. We use Eq. (22) for the total signal I(t).

• Diffusion only (no reactions). In that case we set kon = 0 and the only
parameter to be fit is D. Here we also Eq. (22).
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• Two reactions and diffusion. Here the parameters to be fit areD, k
(1)
on , k

(1)
off , k

(2)
on , k

(2)
off

and we use Eq. (42).

• One state reaction-dominant. In that case, diffusion is assumed to be
infinitely fast and we only fit kon, koff. We use Eq. (30) for the total
signal.

• Two states reaction-dominant. Here we fit k
(1)
on , k

(1)
off , k

(2)
on , k

(2)
off . We use

Eq. (44).

• For each reaction, the values of k
(i)
on , k

(i)
off , k

(o)
on , k

(o)
off are determined based

on the binding model:

– Homogeneous binding. In that case, k
(i)
on = k

(o)
on = kon, k

(i)
off =

k
(o)
off = koff.

– Internal binding. In that case, k
(i)
on = kon, k

(o)
on = 0, k

(i)
off = koff,

k
(o)
off irrelevant.

– External binding. In that case, k
(o)
on = kon, k

(i)
on = 0, k

(o)
off = koff,

k
(i)
off irrelevant.

The experimental parameters rs, rn, rm, and β are determined as explained
in Sections 2.1, 2.2, 2.3, and 2.5, respectively. At this point, we have an
equation for the total signal I(t) that depends only on parameters that we
either obtained experimentally or we are about to fit.

Initial guess for the parameters (any subset of D, k
(1)
on , k

(1)
off , k

(2)
on , k

(2)
off ) was

taken from the literature or obtained from manual coarse-grained scanning
of the parameter space. A time vector was created that contains the ex-
perimental time points. The Matlab [18] routine lsqcurvefit was used to fit
the model to the experimental curve, starting from the initial guess. All
fitted parameters were forced to be positive. The standard error of the fit-
ted parameters were calculated with the Matlab function nlparci (by forcing
the function to return the se variable instead of the confidence intervals).
The inverse Laplace transforms were computed with the invlap.m Matlab
function [19]. The maximum theoretical recovery was calculated from Eq.
(26) for one reaction and from Eq. (43) for two reactions.

2.7 Testing the quality of the fit

The first measure of the quality of the fit was the standard error (SE) in the
values of the fitted parameters (as calculated by Matlab, see Section 2.6).

16



We give the following goodness of fit index. We first calculate the percentage
of the SE from the parameter value (coefficient of variation like). We then
report the maximal percentage across all fitted parameters. The smallest
this measure is, the better the fit.

The averaged squared error between the model total signal and the exper-
imental recovery curve (Mean SSE) = 1

tm

∑tm
i=0 [I(ti)− Iexp(ti)]2 ((t0, t1, ..., tm)

is the time vector) is a measure of the deviation between of the model and
the experiment. To test the quality of the fit, we plotted the Mean SSE
for several values of the fitted parameters, centered around the values sug-
gested by the fitting procedure. Specifically, values of D, kon and koff were
generated in equal spacing (on a logarithmic scale), and I(t) was calculated
based on the kinetic model for each parameter combination. We then plot-
ted the SSE vs. D and vs. kon and koff. In the latter case, we plotted a
two-dimensional array, color-coded according to the Mean SSE, producing
the quality-of-fit ‘heat map’. A distinguishable minimum in the Mean SSE
plot at the values returned by the fitting procedure indicates a good fit.

Even for a deep minimum, it could be that starting the fitting process
from a different initial guess would end up in a different minimum which has
an even lower Mean SSE. We therefore repeated the fitting procedure from
a sample of random starting points. We started with the parameter values
that were obtained from the user-supplied initial guess. For reaction rate
parameters (kons and koffs), we multiplied the parameter with 10u, where u
is uniformly distributed in [−X,X]. For the other parameters, we randomly
either multiplied or divided by u, where u is uniformly distributed in [1, Y ].
This way we scan a large range of order of magnitudes of reaction rates,
since they can vary widely, but remain within the same order of magnitude
for the other parameters.

After drawing the random initial guesses, we ran the fitting procedure
starting from these guesses and recorded the fitted parameters and the Mean
SSEs. To quantify the difference in the fitting parameters, we calculated,
for each random initial guess, the percentage by which each fitted parameter
value differs from the value fitted with the user-supplied initial guess. We
then calculated the maximum of those percentages over all parameters (e.g.,
D, kon, koff, etc.), giving a single index of disparity for each random initial
guess. We then plotted the Mean SSE vs. this index. If the fit was unique,
there will be two clusters of points: (1) points where the fitted parameters
are not too different from the user-supplied fitted values (the fitting proce-
dure converged to the same minimum), and the Mean SSE is similar; (2)
points where the fitted parameters are very different from the user-supplied
fitted values, and the Mean SSE is much larger than the user-supplied one.
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This means that other minima in the SSE landscape are much shallower
than the user-supplied one. On the other hand, if there are points where
the parameter values are different from the user-supplied fitted values but
the Mean SSE is equal or smaller than the user-supplied one, this means that
the minimum originally found is not reliable. As a quantitative measures,
we report the number of random starting points that yielded smaller Mean
SSE than the user supplied one, and the ratio between the median Mean
SSEs of random starting points whose fitted parameters are far from the
user-supplied fitted parameters (by at least X%) to the user-supplied Mean
SSE. The latter measure can roughly quantify the increase in the Mean
SSE when the fitting procedure reached a different minimum from the one
originally found.

2.8 Simultaneous fitting of multiple experiments

Fitting means finding the parameter set that will minimize the SSE. We
attempt to fit up to five parameters; such a multi-dimensional optimization
problem is very hard— it is almost impossible to perform an exhaustive
search that will find the absolute, global minimum. Fitting procedures thus
usually search a good local minimum. The specific minimum we end at
depends on the structure of the SSE space. We observed in heat maps of
real experiments that the SSE space is in many cases quite flat; the global
minimum can be easily missed.

We therefore fitted multiple experiments in parallel. The parameter
set to fit was determined as in Section 2.6. For each set of values taken
by the fitted parameters, we generated a model curve for each experiment
separately. If experiments had different experimental configurations, e.g.,
different bleaching or monitoring radii, this was taken into account when
solving the model. We then concatenated all the experimental curves into
one long time series, and did similarly for the model curves. We searched for
parameters that fit the combined experimental data. This way, we increased
significantly the number of data points we fit our data to, and hopefully
reached a deeper minimum. A similar approach was proposed in [15, 20],
where multiple FRAP curves were simultaneously fitted.

3 A FLIP model

To our knowledge, the FLIP model described below, although based on the
framework of [1], is the first quantitative theory of FLIP.
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3.1 Model definition

In FLIP, the region r < rs is continuously bleached and the fluorescence loss
in r > rs is observed. We use the same basic reaction-diffusion model as in

Section 1, and consider first the single binding state reaction F + S
kon−−⇀↽−−
koff

C.

The reaction-diffusion equations remain the same,

∂f

∂t
= D∇2f − konf + koffc,

∂c

∂t
= konf − koffc,

β = β(t = 0). (46)

These equations, as well as the reaction rates kon and koff, are defined only
for rs < r < rn, and therefore the reaction rates need not be split to the
different regions as in Section 1.2. One boundary condition is the reflecting
walls of the nucleus:

∂

∂r
f(r, t)

∣∣∣∣
r=rn

= 0. (47)

The other boundary condition describes the continuous bleaching of the
spot r < rs. If the bleaching is perfectly continuous for all times t > 0, the
bleaching boundary condition is given by

f(r = rs, t) = 0. (48)

This is an absorbing boundary at r = rs, since any molecule that arrives
to r < rs loses its visibility and therefore disappears. In practice, due
to experimental obstacles (details?), the spot r < rs is not continuously
bleached, and some of the molecules that arrive into the spot are able to
escape without losing their fluorescence. We denote the times the spot is
bleached as the bleaching periods.

To account for the discontinuous nature of the bleaching, we approximate
the boundary at r = rs as an imperfectly absorbing boundary (or radiation
boundary [5]). In this boundary, particles are either absorbed or reflected
when they hit the boundary. This is an approximation, because particles
in FLIP are not reflected immediately when they hit the boundary, but can
rather travel in the spot. If a particle is still in the spot at the time of the
next bleaching period, it will then be eliminated. Otherwise, the particle
will be outside the spot at the next bleaching period and will thus survive.
The latter case can be approximated as if the particle has been reflected
already when it first hit the spot boundary.
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Formally, the imperfect absorption boundary condition is

f(r = rs, t) = α
∂

∂r
f(r, t)

∣∣∣∣
r=rs

, (49)

where α has units of 1/length. Eq. (48) is obtained from (49) in the limit
α → 0 (α → ∞ is the perfect reflection limit).

In FLIP, the total signal I(t) is defined as the average concentration
of visible molecules in the ring limited by the circles r = r1 and r = r2,
rs < r1 < r2 < rn. Here, there are two monitoring radii, r1 and r2. Mathe-
matically,

I(t) = 1

π
(
r22 − r21

) ∫ r2

r1

2πr [f(r, t) + c(r, t) + β(r, t)] dr. (50)

To obtain the initial conditions (again, only for rs < r < rn) we assume
the system is in equilibrium prior to the beginning of the experiment. The
equilibrium concentrations feq and ceq are determined by the equilibrium
equation konfeq = koffceq and by the normalization of the total signal feq +
ceq + β = 1 (as before, β(r, t) = β(r, t = 0) = β is the concentration of the
static particles). Thus

f(r, t = 0) = feq = (1− β)
koff

kon + koff
,

c(r, t = 0) = ceq = (1− β)
kon

kon + koff
. (51)

By that we completely specified our FLIP model.

3.2 Model solution

We approach the FLIP model as in Section 1.4. Laplace transforming Eq.
(46) we obtain

pf − feq = D∇2f − konf + koffc,

pc− ceq = konf − koffc. (52)

The solution of c in terms of f is

c =
ceq + konf

p+ koff
. (53)

Substituting Eq. (53) in Eq. (52) we have

∇2f = q2f − V, (54)
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where q2 = p
D

(
1 + kon

p+koff

)
and V =

feq
D

(
1 + kon

p+koff

)
(we used koffceq =

konfeq). This is the same as in Section 1.4. The solution for f is

f = AI0(qr) +BK0(qr) +
V

q2
. (55)

Applying the boundary conditions (47) and (49) gives equations for the
prefactors A and B:

AqI1(qrn)−BqK1(qrn) = 0,

AI0(qrs) +BK0(qrs) +
V

q2
= α [AqI1(qrs)−BqK1(qrs)] . (56)

This yields

A =
V

q2
K1(qrn)

den
,

B =
V

q2
I1(qrn)

den
, (57)

where

den = αqI1(qrs)K1(qrn)−αqI1(qrn)K1(qrs)−I0(qrs)K1(qrn)−I1(qrn)K0(qrs).
(58)

The total signal is given by

I(p) = 1

π
(
r22 − r21

) ∫ r2

r1

2πr [f(r, p) + c(r, p) + β(r, p)] dr

=
1

π
(
r22 − r21

) ∫ r2

r1

2πr

[
f(r, p)

(
1 +

kon
p+ koff

)
+

ceq
p+ koff

+
β

p

]
dr

=
β

p
+

ceq
p+ koff

+
1 + kon

p+koff

π
(
r22 − r21

) ∫ r2

r1

2πrf(r, t)dr

=
β

p
+

ceq
p+ koff

+
1 + kon

p+koff

π
(
r22 − r21

) ∫ r2

r1

2πr

[
AI0(qr) +BK0(qr) +

V

q2

]
dr

=
β

p
+

ceq
p+ koff

+

(
1 +

kon
p+ koff

)
× (59)

×

[
V

q2
+ 2A

r2I1(qr2)− r1I1(qr1)

q
(
r22 − r21

) − 2B
r2K1(qr2)− r1K1(qr1)

q
(
r22 − r21

) ]
,

where we used the relations [rI1(r)]
′ = rI0(r), [rK1(r)]

′ = −rK0(r), and
L{β} = β/p. Thus, for given β, rs, rn, D, kon, koff, α, r1, r2, the total signal
I(t) can be obtained from Eq. (59) upon Laplace inversion p → t. This is
done numerically, as explained in Section 3.4.
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3.3 Special cases

In this Section we briefly treat a number of special cases, as in Section 1.5.

3.3.1 Infinite times

In FLIP, free visible molecules are continuously lost in the bleached spot.
Also, every bound molecule eventually detaches from the binding site and
becomes free (after which it is bleached). Thus, after long enough times,
the total observed signal decays to the fraction of static particle β.

3.3.2 The reaction-dominant limit

The reaction-dominant limit is much simpler compared to FRAP (Section
1.5.2). Since the diffusion of the free molecules is extremely fast, it can be
assumed that all molecules are bleached immediately once they become free.
Thus, f = 0 at all times (t > 0). We are left with an ordinary differential
equation for c,

∂c

∂t
= −koffc, (60)

with the initial condition c(t = 0) = ceq. The solution (and thereby the
total signal) is:

I(t) = β + c(t) = β + ceqe
−kofft. (61)

3.3.3 Diffusion only

The limit when the process is dominated by diffusion is obtained simply by
setting kon = 0, as in FRAP (Section 1.5.3).

3.3.4 Two binding states

In FLIP, adding another binding state does not fundamentally change the
physical situation, since in FLIP we only probe the region outside the spot.
Two binding states can be interesting though if we measure the fluorescent
signal only from one species of bound particles. According to the model,
the binding sites of both types are evenly spread in the nucleus, prohibiting
measurement of one species only. However, it is sometimes experimentally
possible (e.g., based on external information such as the physical appearance
of the bound particles of each species) to single out the fluorescence coming
from one type of sites. We state here the final results for this case. The
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reactions are (Section 1.6)

F + S(1) k
(1)
on−−⇀↽−−
k
(1)
off

C(1),

F + S(2) k
(2)
on−−⇀↽−−
k
(2)
off

C(2), (62)

where here the reaction rates are defined only in the region rs < r < rn.
The reaction-diffusion system of equations is:

∂f

∂t
= D∇2f − k(1)on f + k

(1)
off c

(1) − k(2)on f + k
(2)
off c

(2),

∂c(1)

∂t
= k(1)on f − k

(1)
off c

(1),

∂c(2)

∂t
= k(2)on f − k

(2)
off c

(2),

β = β(t = 0). (63)

The boundary condition for f is as in Section 3.1. The total measured signal
is:

I(t) = 1

π
(
r22 − r21

) ∫ r2

r1

2πr
[
f(r, t) + c(1)(r, t) + β(r, t)

]
dr, (64)

namely we measure the fluorescence coming from static particles, free par-
ticles and bound particles only of type (1). Assuming equilibrium for t < 0
and normalization of I(t), the initial conditions are

f(r, t = 0) = feq = (1− β)
k
(1)
off

k
(1)
on + k

(1)
off

,

c(1)(r, t = 0) = c(1)eq = (1− β)
k
(1)
on

k
(1)
on + k

(1)
off

,

c(2)(r, t = 0) = c(2)eq = (1− β)
k
(2)
on

k
(2)
off

k
(1)
off

k
(1)
on + k

(1)
off

. (65)

In Laplace space t → p, the concentrations of the bound particles are

c(1) =
c
(1)
eq + k

(1)
on f

p+ k
(1)
off

,

c(2) =
c
(2)
eq + k

(2)
on f

p+ k
(2)
off

. (66)
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For the free particles, Eq. (63) reduces to

∇2f = q2f − V, (67)

where

q2 =
p

D

(
1 +

k
(1)
on

p+ k
(1)
off

+
k
(2)
on

p+ k
(2)
off

)
,

V =
feq
D

(
1 +

k
(1)
on

p+ k
(1)
off

+
k
(2)
on

p+ k
(2)
off

)
. (68)

The solution of f , c(1), and c(2) is exactly as in Section 3.2, but the new
definitions of q2 and V must be used. Substituting f and c(1) in Eq. (64)
for the total signal,

I(p) = β

p
+

c
(1)
eq

p+ k
(1)
off

+

(
1 +

k
(1)
on

p+ k
(1)
off

)
× (69)

×

[
V

q2
+ 2A

r2I1(qr2)− r1I1(qr1)

q
(
r22 − r21

) − 2B
r2K1(qr2)− r1K1(qr1)

q
(
r22 − r21

) ]
.

Note that (69) is exactly as (59) (the single binding state) except that kon

and koff are replaced by k
(1)
on and k

(1)
off , respectively. This is because when

solving for the total signal, we take into account only binding sites of type
(1). The infinite time limit, the reaction-dominant limit, and the diffusion
only case are exactly as in the case of a single binding state (Sections 3.3.1,
3.3.2, and 3.3.3, respectively).

In case we measure the total fluorescence coming from all visible molecules,
the initial conditions become (cf. Eq. (37)):

f(t = 0) = feq = (1− β)

(
1 +

k
(1)
on

k
(1)
off

+
k
(2)
on

k
(2)
off

)−1

,

c(1)(t = 0) = c(1)eq = (1− β)
k
(1)
on

k
(1)
off

(
1 +

k
(1)
on

k
(1)
off

+
k
(2)
on

k
(2)
off

)−1

,

c(2)(t = 0) = c(2)eq = (1− β)
k
(2)
on

k
(2)
off

(
1 +

k
(1)
on

k
(1)
off

+
k
(2)
on

k
(2)
off

)−1

. (70)
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The constants V and q2 remain the same. The total signal is the average
concentration of f + c(1) + c(2) in the ring:

I(p) = β

p
+

c
(1)
eq

p+ k
(1)
off

+
c
(2)
eq

p+ k
(2)
off

+

(
1 +

k
(1)
on

p+ k
(1)
off

+
k
(2)
on

p+ k
(2)
off

)
× (71)

×

[
V

q2
+ 2A

r2I1(qr2)− r1I1(qr1)

q
(
r22 − r21

) − 2B
r2K1(qr2)− r1K1(qr1)

q
(
r22 − r21

) ]
.

The reaction dominant limit becomes a double exponential,

I(t) = β + c(1)eq e
−k

(1)
off t + c(2)eq e

−k
(2)
off t. (72)

3.4 Data processing

The computational pipeline for data processing is similar to that of FRAP
(Section 2). The radii rs and rn are obtained as in Sections 2.1 and 2.2,
respectively. The static fraction β is equal to the long time limit of the total
signal (in any configuration), and thus can be easily estimated. Images
are acquired, corrected, and averaged as in Section 2.4. Here, Iexp(t) is
calculated as the average signal intensity in the ring limited by the given
parameters r1 and r2. If there are two binding states, we compute the
average either over the entire ring or only over these areas in the ring in
which we observe bound particles of one species.

The parameters to fit are as follows. For one reaction and diffusion, we
fit α, D, kon, and koff (Eq. (59) for the total signal) (or do we always have
perfect absorption α = 0?). For diffusion only, we fit only α and D (Eq.
(59) with kon = 0). For a reaction-dominant process (one reaction, or two
reactions when we measure the fluorescence of one species only), we fit kon
and koff (Eq. (61); note that ceq depends on kon). With two reactions and

diffusion, we fit α, D, k
(1)
on , k

(1)
off , k

(2)
on , or k

(2)
off (Eq. (69) if we measure one

species and Eq. (71) if we measure both). In a reaction-dominant process

with two binding states when we measure both species, we fit k
(1)
on , k

(1)
off , k

(2)
on ,

and k
(2)
off (Eq. (72)).

For each experimental data Iexp(t), we search for the parameters that
give the best fit of I(t) to Iexp(t). We create an initial guess according to
the literature, to manual scanning, or to the FRAP results. We then use the
Matlab procedures lsqcurvefit to calculate the best fit parameters, nlparci
to calculate confidence intervals, and invlap [19] to calculate inverse Laplace
transforms, exactly as in Section 2.6. Plots of the sum of squared errors (be-
tween Iexp(t) and I(t)) vs. D or vs. kon and koff are generated as in Section
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2.6. We also combine FLIP curves and FRAP curves for simultaneous fit
(as long as the binding model and the set of fitted parameters are the same)
as in Section 2.8.

3.5 Comment

Theory was developed for a somewhat different continuous photobleaching
experiment [21]. In that paper, a circle was continuously bleached as in
FLIP, however in low laser intensity. This causes partial, slow bleaching of
the molecules in the spot. The intensity is then averaged over the spot (as
opposed to over a ring outside the spot in FLIP).
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